- (c) Draw the circuit diagram of Astable multivibrator using OPAMP and find the expression for its time period. Show that $f_0 = \frac{1}{2 \text{ RC}}$ if $R_1 = 1.16 \text{ R}_2$.
- 5. Attempt any two parts of the following: (2×10=20)
 - (a) Define Lock-in-Range, Capture Range and Pull-in-Time as related to PLL. Draw the circuit diagram of Frequency multiplier using PLL and explain its working.
 - (b) Draw the functional block diagram of IC 555 and explain its working. Draw the circuit diagram of a monostable multivibrator using 555 and find expression for quasi state period.
 - (c) Write short note on analog to digital converter.

Printed Pages—4

EEC501

(Following Paper ID and Roll No. to be filled in your Answer Book											ok)
PAPER ID: 2117 Roll	No.										

B. Tech.

(SEM. V) THEORY EXAMINATION 2011-12

INTEGRATED CIRCUITS

Time: 3 Hours

Total Marks: 100

Note: Attempt all questions. All questions carry equal marks.

Assume missing data suitably if any.

- 1. Attempt any two parts of the following: $(10\times2=20)$
 - (a) (i) What are desirable characteristics of current mirror circuits? Draw the simple BJT current mirror circuit and reduce the expression for current transfer ratio using matched transistors.
 - (ii) What are the advantages of Widlar current source? For the circuit shown in figure 1, assuming high β of transistors and $V_{BE} = 0.7 \text{ V}$ at 1 mA. Find the value of R that will result in $I_0 = 10 \, \mu\text{A}$.

Figure 1

19775

- (b) Explain the role of negative feedback capacitance of $C_C = 30 \, \text{pf}$ at second stage of OPAMP 741. Find corresponding pole frequency of II^{nd} stage gain = 515, output resistance of input stage is 67 M Ω and input resistance of II^{nd} stage is 4 M Ω .
- (c) Figure 2 shows output stage OPAMP 741. Find output voltage swing. Also explain the role of short circuit protection circuit.

- 2. Attempt any two parts of the following: $(10 \times 2 = 20)$
 - (a) For the circuit shown in figure 4, find $\frac{\mathbf{v}_0}{\mathbf{V}_1}$.

2

Design a single stage amplifier to have $R_i=1~M\Omega$ and voltage gain hundred. N_o Resistance should have value greater than 50 M Ω .

- (b) Draw the circuit diagram of an inductance simulation circuit and find the expression for equivalent inductance.
- (c) Draw the circuit diagram of state variable filter and find the transfer function of Low pass, High pass and Band pass filter.
- 3. Attempt any two parts of the following: $(2\times10=20)$
 - (a) Find truth table and CMOS realization of following gates:
 - (i) AND-OR-INVERT (AOI) \Rightarrow F = $\overline{AB + CD}$
 - (ii) OR-AND-INVERT (OAI) \Rightarrow F = $\overline{(A+B)(C+D)}$
 - (b) Give two different CMOS realization of the exclusive—OR function $Y = A\overline{B} + \overline{A}B$ in which the PDN and PUN are dual networks.
 - (c) Give CMOS implementation of a clocked SR flip-flop and explain its working.
- 4. Answer any two parts of the following: $(2\times10=20)$
 - (a) Draw the circuit diagram of triangular waveform generator using OPAMP and also find the expression for frequency of the Triangular waveform.
 - (b) Draw the circuit diagram of Anti-log amplifier and find the expression for output voltage.